Thông tin tài liệu


Nhan đề : Periodic solution for Boussinesq systems in weak-Morrey spaces
Tác giả : Pham Truong Xuan
Chủ đề : Mathematical Physics; Functional Analysis
Năm xuất bản : 2024
Nhà xuất bản : Journal of Mathematical Analysis and Applications
Số tùng thư/báo cáo: ;1-22
Tóm tắt : We prove the existence and polynomial stability of periodic mild solutions for Boussinesq systems in critical weak-Morrey spaces for dimension n > 3. Those systems are derived via the Boussinesq approximation and describe the movement of an incompressible viscous fluid under natural convection filling the whole space R Using certain dispersive and smoothing properties of heat semigroups on Morrey-Lorentz spaces as well as Yamazaki-type estimate on block spaces, we prove the existence of bounded mild solutions for the linear systems corresponding to the Boussinesq systems. Then, we establish a Massera-type theorem to obtain the existence and uniqueness of periodic solutions to corresponding linear systems on the half line time-axis by using a mean-ergodic method. Next, using fixed point arguments, we can pass from linear
URI: http://thuvienso.thanglong.edu.vn//handle/TLU/13473
Bộ sưu tậpBáo, tạp chí quốc tế
XEM MÔ TẢ

16

XEM & TẢI

0

Danh sách tệp tin đính kèm:
Ảnh bìa
  • BBTL.0000038_Periodic solution for Boussinesq systems in weak-Morrey spaces.pdf
      Restricted Access
    • Dung lượng : 345,53 kB

    • Định dạng : Adobe PDF