Thông tin tài liệu
Thông tin siêu dữ liệu biểu ghi
| Trường DC | Giá trị | Ngôn ngữ |
|---|---|---|
| dc.contributor | Nguyen Thi Van | - |
| dc.contributor | Tran Van Thuy | - |
| dc.contributor.author | Pham Truong Xuan | - |
| dc.date.accessioned | 2025-11-04T02:19:12Z | - |
| dc.date.available | 2025-11-04T02:19:12Z | - |
| dc.date.issued | 2024 | - |
| dc.identifier.uri | http://thuvienso.thanglong.edu.vn//handle/TLU/13473 | - |
| dc.description.abstract | We prove the existence and polynomial stability of periodic mild solutions for Boussinesq systems in critical weak-Morrey spaces for dimension n > 3. Those systems are derived via the Boussinesq approximation and describe the movement of an incompressible viscous fluid under natural convection filling the whole space R Using certain dispersive and smoothing properties of heat semigroups on Morrey-Lorentz spaces as well as Yamazaki-type estimate on block spaces, we prove the existence of bounded mild solutions for the linear systems corresponding to the Boussinesq systems. Then, we establish a Massera-type theorem to obtain the existence and uniqueness of periodic solutions to corresponding linear systems on the half line time-axis by using a mean-ergodic method. Next, using fixed point arguments, we can pass from linear | vi |
| dc.language.iso | en | vi |
| dc.publisher | Journal of Mathematical Analysis and Applications | vi |
| dc.relation.ispartofseries | ;1-22 | - |
| dc.subject | Mathematical Physics | vi |
| dc.subject | Functional Analysis | vi |
| dc.title | Periodic solution for Boussinesq systems in weak-Morrey spaces | vi |
| dc.type | Bài báo/Newspaper | vi |
| dc.identifier.doi | https://doi.org/10.1016/j.jmaa.2024.128255 | - |
| Bộ sưu tập | Báo, tạp chí quốc tế | |
Danh sách tệp tin đính kèm:

