Thông tin tài liệu

Thông tin siêu dữ liệu biểu ghi
Trường DC Giá trịNgôn ngữ
dc.contributorNguyen Thi Van-
dc.contributorTran Van Thuy-
dc.contributor.authorPham Truong Xuan-
dc.date.accessioned2025-11-04T02:19:12Z-
dc.date.available2025-11-04T02:19:12Z-
dc.date.issued2024-
dc.identifier.urihttp://thuvienso.thanglong.edu.vn//handle/TLU/13473-
dc.description.abstractWe prove the existence and polynomial stability of periodic mild solutions for Boussinesq systems in critical weak-Morrey spaces for dimension n > 3. Those systems are derived via the Boussinesq approximation and describe the movement of an incompressible viscous fluid under natural convection filling the whole space R Using certain dispersive and smoothing properties of heat semigroups on Morrey-Lorentz spaces as well as Yamazaki-type estimate on block spaces, we prove the existence of bounded mild solutions for the linear systems corresponding to the Boussinesq systems. Then, we establish a Massera-type theorem to obtain the existence and uniqueness of periodic solutions to corresponding linear systems on the half line time-axis by using a mean-ergodic method. Next, using fixed point arguments, we can pass from linearvi
dc.language.isoenvi
dc.publisherJournal of Mathematical Analysis and Applicationsvi
dc.relation.ispartofseries;1-22-
dc.subjectMathematical Physicsvi
dc.subjectFunctional Analysisvi
dc.titlePeriodic solution for Boussinesq systems in weak-Morrey spacesvi
dc.typeBài báo/Newspapervi
dc.identifier.doihttps://doi.org/10.1016/j.jmaa.2024.128255-
Bộ sưu tậpBáo, tạp chí quốc tế

Danh sách tệp tin đính kèm:
Ảnh bìa
  • BBTL.0000038_Periodic solution for Boussinesq systems in weak-Morrey spaces.pdf
      Restricted Access
    • Dung lượng : 345,53 kB

    • Định dạng : Adobe PDF