Search Results

Results 1-10 of 91 (Search time: 0.069 seconds).
Item hits:
  • Book

  • Authors: C. Henry Edwards (2008)

  • The Sixth Edition of this acclaimed differential equations book remains the same classic volume it's always been, but has been polished and sharpened to serve readers even more effectively. Offers precise and clear-cut statements of fundamental existence and uniqueness theorems to allow understanding of their role in this subject. Features a strong numerical approach that emphasizes that the effective and reliable use of numerical methods often requires preliminary analysis using standard elementary techniques. Inserts new graphics and text where needed for improved accessibility. A useful reference for readers who need to brush up on differential equations.

  • Book

  • Authors: Korte, Bernhard (2002)

  • This book on combinatorial optimization is a beautiful example of the ideal textbook.The second edition (with corrections and many updates) of this very recommendable book documents the relevant knowledge on combinatorial optimization and records those problems and algorithms that define this discipline today. To read this is very stimulating for all the researchers, practitioners, and students interested in combinatorial optimization

  • Book

  • Authors: Stephen Boyd (2004)

  • Convex optimization problems arise frequently in many different fields. A comprehensive introduction to the subject, this book shows in detail how such problems can be solved numerically with great efficiency. The focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. The text contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance, and economics.

  • Book

  • Authors: Mokhtar S. Bazaraa (2006)

  • As the Solutions Manual, this book is meant to accompany the main title, Nonlinear Programming: Theory and Algorithms, Third Edition. This book presents recent developments of key topics in nonlinear programming (NLP) using a logical and self-contained format. The volume is divided into three sections: convex analysis, optimality conditions, and dual computational techniques. Precise statements of algortihms are given along with convergence analysis. Each chapter contains detailed numerical examples, graphical illustrations, and numerous exercises to aid readers in understanding the concepts and methods discussed.

  • Book

  • Authors: Curtis F. Gerald (2004)

  • Applied Numerical Analysis The seventh edition of this classic text has retained the features that make it popular, while updating its treatment and inclusion of Computer Algebra Systems and Programming Languages. Interesting and timely applications motivate and enhance students' understanding of methods and analysis of results. This text incorporates a balance of theory with techniques and applications, including optional ...

  • Book

  • Authors: Ronald S. Irving. (2004)

  • This book began life as a set of notes that I developed for a course at the University of Washington entitled Introduction to Modern Algebra for Tea- ers. Originally conceived as a text for future secondary-school mathematics teachers, it has developed into a book that could serve well as a text in an - dergraduatecourseinabstractalgebraoracoursedesignedasanintroduction to higher mathematics. This book di?ers from many undergraduate algebra texts in fundamental ways; the reasons lie in the book’s origin and the goals I set for the course. The course is a two-quarter sequence required of students intending to f- ?ll the requirements of the teacher preparation option for our B.A. degree in mathematics, or of the teacher preparation minor. It is required as well of those intending to m...

  • Book

  • Authors: Richard Crandall (2005)

  • Prime numbers beckon to the beginner, as the basic notion of primality is accessible even to children. Yet, some of the simplest questions about primes have confounded humankind for millennia. In the new edition of this highly successful book, Richard Crandall and Carl Pomerance have provided updated material on theoretical, computational, and algorithmic fronts. New results discussed include the AKS test for recognizing primes, computational evidence for the Riemann hypothesis, a fast binary algorithm for the greatest common divisor, nonuniform fast Fourier transforms, and more. The authors also list new computational records and survey new developments in the theory of prime numbers, including the magnificent proof that there are arbitrarily long arithmetic progressions of primes,...