Thông tin tài liệu
| Nhan đề : | Unsupervised learning in space and time : a modern approach for computer vision using graph-based techniques and deep neural networks |
| Tác giả : | Marius Leordeanu |
| Chủ đề : | Computer Vision | Neural networks | Graph-based techniques | Mạng nơron | Kỹ thuật dựa trên đồ thị |
| Năm xuất bản : | 2020 |
| Nhà xuất bản : | Springer |
| Tóm tắt : | This book addresses one of the most important unsolved problems in artificial intelligence: the task of learning, in an unsupervised manner, from massive quantities of spatiotemporal visual data that are available at low cost. The book covers important scientific discoveries and findings, with a focus on the latest advances in the field. Presenting a coherent structure, the book logically connects novel mathematical formulations and efficient computational solutions for a range of unsupervised learning tasks, including visual feature matching, learning and classification, object discovery, and semantic segmentation in video. |
| URI: | http://thuvienso.thanglong.edu.vn//handle/TLU/11812 |
| Bộ sưu tập | Tin học |
XEM MÔ TẢ
42
XEM & TẢI
0
Danh sách tệp tin đính kèm:

