Item Infomation


Title: Interpretable machine learning : a guide for making black box models explainable
Authors: Christoph Molnar
Keywords: Artificial Intelligence | Machine learning | Học máy | Giải thích các mô hình học máy | Mô hình hộp đen
Issue Date: 2022
Abstract: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. The focus of the book is on model-agnostic methods for interpreting black box models such as feature importance and accumulated local effects, and explaining individual predictions with Shapley values and LIME.
URI: http://thuvienso.thanglong.edu.vn//handle/TLU/13313
Appears in CollectionsTin học
ABSTRACTS VIEWS

16

VIEWS & DOWNLOAD

0

Files in This Item:
Thumbnail
  • TVS.008356_Molnar - Interpretable Machine Learning 2ed(2022) [Molnar] [9798411463330] (2022).pdf
      Restricted Access
  • Đăng nhập để đọc nội dung file
    • Size : 12,64 MB

    • Format : Adobe PDF